1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
26–30 Jul 2021
Shangshan Hotel, Building 9
Asia/Shanghai timezone

Nuclear system size scan for freeze-out properties and baryon-strangeness correlation in relativistic heavy-ion collisions by using a multiphase transport model

Not scheduled
15m
Conference Hall (Shangshan Hotel, Building 9)

Conference Hall

Shangshan Hotel, Building 9

33 Changlingnan Road, Guanshan Lake District, Guiyang, China

Speaker

Mr Wang Dongfang (Fudan university)

Description

In this study, we employ a multiphase transport (AMPT) model for considering the bulk properties at the freeze-out stage for $\mathrm{^{10}B+^{10}B}$, $\mathrm{^{12}C+^{12}C}$, $\mathrm{^{16}O+^{16}O}$, $\mathrm{^{20}Ne+^{20}Ne}$, $\mathrm{^{40}Ca+^{40}Ca}$, $\mathrm{^{96}Zr+^{96}Zr}$, and $\mathrm{^{197}Au+^{197}Au}$ collisions at RHIC energies $\sqrt{s_{NN}}$ of 200, 20, and 7.7 GeV. We use a statistical thermal model to extract the parameters at the chemical freeze-out stage, which agree with those from other thermal model calculations. It was found that there is a competitive relationship between the kinetic freeze-out parameter $T_{kin}$ and the radial expansion velocity $\beta_{T}$, which also agrees with the STAR or ALICE results. We found that the chemical freeze-out strangeness potential $\mu_{s}$ remains constant in all collision systems and that the fireball radius $R$ is dominated by $\left\langle \mathrm{N_{Part}}\right\rangle$, which can be well fitted by a function of $a \left\langle \mathrm{N_{Part}}\right\rangle^{b}$ with $b \approx 1/3$. In the same context, the system size dependence of baryon-strangeness (BS) correlation also has been investigated. The combination of different hadrons affects BS correlations significantly. We find when the maximum rapidity acceptance $y_{\text{max}}>3$, these coefficients are independent of the combination of different hadrons in the final state based on the AMPT model.

Primary author

Mr Wang Dongfang (Fudan university)

Co-authors

Mr Ma Yugang (Fudan university) Mr Zhang Song (Fudan university)

Presentation materials

There are no materials yet.