1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.

On some unsettled half-lives of AMS radionuclides

AAN-1
22 Oct 2024, 09:20
20m
GRAND BALLROOM (宴会厅), 2nd Floor

GRAND BALLROOM (宴会厅), 2nd Floor

GULIN BRAVO HOTEL (桂林宾馆),14 Ronghu Road, Guilin, 541002, China
Oral Presentation Applications in Astrophysics and Nuclear Sciences Applications in Astrophysics and Nuclear Sciences

Speaker

Walter Kutschera (University of Vienna, Faculty of Physics, Isotope Physics, A-1090 Vienna, Austria)

Description

Half-lives ought to be accurate, and preferably precise as well. In the recently published review on half-lives of long-lived radionuclides (Heinitz et al., 2022), several cases were mentioned where multiple half-life measurements on a specific radionuclide were incompatible with each other within the reported uncertainties. We call these “unsettled” half-lives. There are also cases where only very old half-life measurements (50 to 60 years ago) exist, which may need confirmation.
The direct way to determine a long half-life follows from the radioactive decay law: dN/dt = -λ$\cdot$N,
where N is the number of radionuclides, dN/dt is its decay rate (activity), and λ the decay constant related to the half-life via λ = ln2/t$_{1/2}$. Both N and dN/dt need to be measured accurately and independently to obtain the half-life.
The half-life of $^{10}$Be can be considered as a good example of how early (trivial) mistakes were corrected and eventually an accurate and precise half-life value of (1.387$\pm$0.012)$\times$10$^{6}$ y was established from two independent measurements (Korschinek et al., 2010, Chmeleff et al., 2010).
In this contribution, we want to discuss unsettled half-lives of some radionuclides where AMS was partly involved in the half-life measurement itself, and which are of interest for applications through AMS measurements. Among others, these comprise the radionuclides $^{32}$Si, $^{39}$Ar, $^{53}$Mn, $^{59}$Ni, $^{79}$Se, $^{135}$Cs, and $^{146}$Sm.
We will discuss some ongoing and planned half-life measurements on these radionuclides, which hopefully will lead to a firmly accepted value. The number of radionuclides in the sample whose activity needs to be measured is a crucial input for a half-life determination. Different methods to measure radionuclide concentrations (e.g. AMS, ICP-MS) will be mentioned. In particular, a critical assessment of the measurement of absolute isotope ratios with AMS will be presented, In some cases, geophysical half-life measurements can also be combined with physical measurements to confirm or refute half-life values.

S. Heinitz, I. Kajan, and D. Schumann, How accurate are half-life data of long-lived radionuclides? Radiochim. Acta 110/6-9 (2022) 589-608.
G. Korschinek et al., A new value for the half-life of $^{10}$Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instr. Meth. Phys. Res. B 268 (2010) 187–191.
J. Chmeleff et al., Determination of the half-life of $^{10}$Be by multicollector ICP-MS and liquid scintillation counting, Nucl. Instr. Meth. Phys. Res. B 268 (2010) 192–199.

Student Submission No

Primary authors

Walter Kutschera (University of Vienna, Faculty of Physics, Isotope Physics, A-1090 Vienna, Austria) Martin Martschini (University of Vienna, Faculty of Physics, Isotope Physics, A-1090 Vienna, Austria) Peter Steier (University of Vienna, Faculty of Physics, Isotope Physics, A-1090 Vienna, Austria) Alexander Wieser (University of Vienna, Faculty of Physics, Isotope Physics, A-1090 Vienna, Austria) Michael Paul (Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel) Dorothea Schumann (Isotope and Target Chemistry, Paul Scherrer Institute (PSI), CH-5232 Villingen, Switzerland) Christof Vockenhuber (Laboratory of Ion Beam Physics, ETH Zuerich, CH-8083, Switzerland ) Johannes Lachner (Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany) Anton Wallner (Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany)

Presentation materials

There are no materials yet.