1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.

East vs West: comparing the rates of landscape change in the southern African region.

PSB-26
23 Oct 2024, 17:15
20m
Lobby and Hallway , 2nd Floor

Lobby and Hallway , 2nd Floor

Poster Applications of Cosmogenic Isotopes Poster Session B

Speaker

Rivoningo Khosa (iThemba LABS)

Description

For channel incision rate determination and comparison, bedrock samples from sections of the Olifants River (n = 10) in the dry tropical/subtropical Kruger National Park, as well as samples from sections of the Orange River (n = 20), in the arid Northern Cape were collected. Using cosmogenic in-situ 10Be in pure quartz, average incision rates determined from granitic samples of the Olifants River indicate that the channel is incising at a rate of 26.4 ± 1.77 m/Ma, while granitic and quartzitic samples from along the Orange River produce a slower average rate of 6.89 ± 0.45 m/Ma, implying considerably slower channel evolution in the west. These rates fall within a very wide range of previously determined rates of erosion and channel incision across various southern Africa of 0.2 – 255 m/Ma landforms. The roughly four times faster channel incision rate along the Olifants River, compared to that of the Orange River, suggest that the prevailing long-term climate is a driver on erosion and apparent exposure ages, where the wetter east yields faster rates and younger apparent exposure ages, while the drier west, slower rates and older apparent exposure ages. Quartzitic rates of incision are also seen to be slower than those of granitic composition along the Orange River, suggesting a further lithological control on the rates of erosion and landscape change. Although the southern African landscape has been considered tectonically quiescent, the data presented here imply that landscape evolution is not uniform, and that is prevailing long-term climate variability and lithology are the primary drivers of differential erosion across the region.

Student Submission Yes

Primary author

Rivoningo Khosa (iThemba LABS)

Co-authors

Dr Stephen Tooth (Aberystwyth University) Dr Robyn Pickering (University of Cape Town) Dr Vela Mbele (NRF iThemba LABS) Dr Stephan Winkler (Helmholtz Zentrum Dresden Rossendorf) Dr Konstanze Stübner (Helmholtz-Zentrum Dresden-Rossendorf)

Presentation materials