Conveners
Applications in Astrophysics and Nuclear Sciences
- Anton Wallner (HZDR)
Applications in Astrophysics and Nuclear Sciences
- Walter Kutschera (University of Vienna, Faculty of Physics)
Description
From the surface of Earth to meteorites and interstellar space. Using the AMS to help understand processes and phenomena within our universe; AMS methods for monitoring nuclear emissions, identifying sources of emissions, and the management of nuclear waste.
Half-lives ought to be accurate, and preferably precise as well. In the recently published review on half-lives of long-lived radionuclides (Heinitz et al., 2022), several cases were mentioned where multiple half-life measurements on a specific radionuclide were incompatible with each other within the reported uncertainties. We call these “unsettled” half-lives. There are also cases where only...
At the Centro Nacional de Aceleradores (CNA, Seville, Spain), research efforts are being devoted to exploring the limits of the 1 MV AMS system to analyse several radioisotopes present in nuclear waste that pose serious analytical challenges to radiometric techniques. The focus has been placed on 41Ca, 36Cl, and actinides radionuclides (239,240,241Pu, 236,238U, 237Np, 241,243Am and...
The astrophysical sites where r-process elements are synthesized remain mysterious: it is clear that neutron star mergers (kilonovae, KNe) contribute, and some classes of core-collapse supernovae (SNe) are also possible sources of at least the lighter r-process species. The discovery of 60Fe on the Earth and Moon implies that one or more astrophysical explosions have occurred near the Earth...
The long-lived radionuclides Fe-60 (t$_{1/2}$=2.6 Myr) and Hf-182 (t$_{1/2}$=8.9 Myr) are sensitive monitors to the neutron environment under different stellar conditions. Production of both nuclides requires neutron fluxes high enough to compete with the decay of the shorter-lived nuclides Fe-59 (t$_{1/2}$=44 d) and Hf-181 (t$_{1/2}$=42 d) which separate Fe-60 and Hf-182 from stable isotopes...
The radionuclide $^{60}$Fe(t$_{1/2}$ = 2.6 Myr) is a tracer for recent nucleosynthesis in massive stars and core-collapse supernovae, whereas the longer-lived radionuclide $^{244}$Pu (t$_{1/2}$ = 81 Myr) is synthesized in the astrophysical r-process. The nucleosynthesis site of the r-process is heavily debated in the astrophysics community with rare supernovae and neutron star mergers being...
Various nucleosynthetic processes contribute to the creation of the chemical elements in the universe. The rapid neutron capture process ($r$-process) alone produces over half of the elements heavier than iron and is uniquely capable of synthesizing the actinides. Recent $r$-process events in the solar neighbourhood can leave fingerprints in the solar system, such as the pure $r$-process...
DAMA/LIBRA (DArk MAtter/Large sodium Iodide Bulk for RAre Processes) is a low-background NaI:Tl crystal detector array in the Gran Sasso underground laboratory in Italy. It has been measuring purported dark matter signals for over two decades. DAMA/LIBRA reported an annual modulation signal in the 2 to 6 keV energy region that is claimed to be from dark matter [1]. SABRE (Sodium-iodide with...