1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
21–26 May 2017
Beijing International Convention Center
Asia/Shanghai timezone

Development of Radiation-Hard Scintillators and Wavelength Shifting Fibers

22 May 2017, 15:12
18m
Room 305A (Beijing International Convention Center)

Room 305A

Beijing International Convention Center

No.8 Beichen Dong Road, Chaoyang District, Beijing P. R. China 100101
oral Calorimeters R1-Calorimeters(1)

Speaker

Burak Bilki (U)

Description

We have been performing research on the radiation-hard active media for calorimetry by exploring intrinsically radiation-hard materials and their mixtures. The first samples we probed were Polyethylene Naphthalate (PEN), Polyethylene Terephthalate (PET) and thin sheets of HEM. These materials have been reported to have promising performance under high radiation conditions. Recently, we developed a new scintillator material doping Peroxide-cured polysiloxane bases with the primary fluors p-terphenyl (pTP), p-quarterphenyl (pQP), or 2.5-Diphenyloxazole (PPO) and/or the secondary fluors 3-HF or bis-MSB. The scintillation yield of the pTP/bis-MSB sample was compared to a BGO crystal and was measured to yield roughly 50% better light production compared to the BGO crystal. Various scintillator tiles were exposed to the gammas from a 137Cs source at the University of Iowa Hospitals and Clinics up to 1 and 10 MRad. The results are within expectations and exhibit sufficiently high performance for implementations in the future/upgrade hadron/lepton collider detectors. We have also identified materials with proven radiation resistance, long Stokes shifts to enable long self-absorption lengths, with decay constants ~10 ns or less for development of radiation-hard wavelength shifting fibers. Here we report on the recent advancements in the development and testing of radiation-hard scintillators and wavelength shifting fibers and discuss possible future implementations.

Primary author

Co-authors

David Winn (Fairfield University) Emrah Tiras (Iowa State University) James Wetzel (University of Iowa) Yasar Onel (University of Iowa)

Presentation materials