1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
16–21 Aug 2019
Guilin Bravo Hotel, Guilin, China
Asia/Shanghai timezone

Bethe-Salpeter wavefunctions of hybrid charmonia

Not scheduled
15m
Guilin Bravo Hotel, Guilin, China

Guilin Bravo Hotel, Guilin, China

14 South Ronghu Road, Xiangshan, Guilin 541002, Guangxi, China
Poster Posters

Speaker

Mr Yunheng Ma (IHEP, CAS)

Description

The charmonium-like hybrid mesons with $J^{PC}=(0,1,2)^{-+}$ and $1^{--}$ are investigated on anisotropic lattices in the quenched approximation. For these states, we construct spatially extended operators by splitting the $\bar{c}\Gamma c B$-type operators into two parts ($c\bar{c}$ and the chromo-magnetic field strength $B$) with different spatial distances $r$. In the Coulomb gauge, the matrix elements of these operators between the vacuum and the corresponding states are interpreted as Bethe-Salpeter (BS) wave functions, which can be extracted by fitting the correlation functions at different $r$ simultaneously. After disentangling from the conventional charmonium states in $0^{-+}$ ,$2^{-+}$ and $1^{--}$ channels,the spectrum and the BS wave functions of the hybrid states in the four channels are obtained. It is found that the ground state, the first excited state and even the second excited states of these channels are nearly degenerate in mass and have almost the same BS wave functions. Furthermore, the BS wave functions of the ground state, the first excited state and the second excited state have zero radial node, one radial node and two radial nodes, respectively. In the non-relativistic picture, this observation implies that the hybrid states in these four channels have similar infrastructure and the separation between the $c\bar{c}$ component and gluonic component (depicted by $B$ operator) can be taken as a meaningful dynamical variable.

Primary authors

Dr Ying CHEN (高能所) Mr Yunheng Ma (IHEP, CAS)

Presentation materials

There are no materials yet.