Conveners
Parallel talks 6: Flavour & Precision Physics
- Luchang Jin (University of Connecticut)
Measurements of the branching ratios of $B \to D^{(*)}\tau\nu / B \to D^{(*)}\ell\nu$ by the BaBar, Belle, and LHCb collaborations consistently point towards an abundance of taus compared to channels with light leptons at the 3-4 sigma level. This $R(D^{(*)})$ anomaly could imply TeV scale new physics. In this contribution, I will first review several new physics interpretations of the...
As one of the hypothetical principles in the Standard Model (SM), lepton flavor universality (LFU) should be tested with a precision as high as possible such that the physics violating this principle can be fully examined. The run of $Z$ factory at a future $e^+e^−$ collider such as CEPC or FCC-$ee$ provides a great opportunity to perform this task because of the large statistics and high...
The Fermilab Muon g-2 Experiment aims to search for evidence of new physics by measuring the anomalous magnetic moment of muons, represented by the quantity (g-2)/2. The experiment injects muons into a storage ring, where the precession frequency is measured to determine (g-2)/2.
The analysis of the experiment involves two main components: measuring the difference frequency (ωa) between the...
We consider a quark and lepton model explaining their masses, mixings, and CP violating phases, introducing modular $A_4$ and hidden gauged $U(1)$ symmetries. The hidden $U(1)$ brings us heavier Majorana fermions that are requested by chiral anomaly cancellations, and we work on a canonical seesaw scenario due to their neutral particles. Then, we discuss a scalar dark matter candidate that has...