1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.

Entanglement suppression and low-energy scattering of heavy mesons

26 Sep 2024, 10:05
20m
China Hall 2

China Hall 2

2.Parallel session talk Hadrons and related high-energy physics Parallel 2:Hadrons and related high-energy physics

Speaker

Tao-Ran Hu (University of Chinese Academy of Sciences)

Description

This talk is based on [Phys.Rev.D 110 (2024) 1, 014001]. Recently entanglement suppression was proposed to be one possible origin of emergent symmetries. Here we test this conjecture in the context of heavy meson scatterings. The low-energy interactions of $D^{(*)}\bar D^{(*)}$ and $D^{(*)} D^{(*)}$ are closely related to the hadronic molecular candidates $X(3872)$ and $T_{cc}(3875)^+$, respectively, and can be described by a nonrelativistic effective Lagrangian manifesting heavy-quark spin symmetry, which includes only constant contact potentials at leading order. We explore entanglement suppression in a tensor-product framework to treat both the isospin and spin degrees of freedom. Using the $X(3872)$ and $T_{cc}(3875)^+$ as inputs, we find that entanglement suppression indeed leads to an emergent symmetry, namely, a light-quark spin symmetry, and as such the $D^{(*)}\bar D^{(*)}$ or $D^{(*)} D^{(*)}$ interaction strengths for a given total isospin do not depend on the total angular momentum of light (anti)quarks. The $X(3872)$ and $T_{cc}(3875)^+$ are predicted to have five and one isoscalar partner, respectively, while the corresponding partner numbers derived solely from heavy-quark spin symmetry are three and one, respectively. The predictions need to be confronted with experimental data and lattice quantum chromodynamics results to further test the entanglement suppression conjecture.

Primary authors

Tao-Ran Hu (University of Chinese Academy of Sciences) Su Chen (University of Chinese Academy of Sciences) Feng-Kun Guo (ITP, CAS)

Presentation materials