Speaker
Description
This talk is based on [Phys.Rev.D 110 (2024) 1, 014001]. Recently entanglement suppression was proposed to be one possible origin of emergent symmetries. Here we test this conjecture in the context of heavy meson scatterings. The low-energy interactions of $D^{(*)}\bar D^{(*)}$ and $D^{(*)} D^{(*)}$ are closely related to the hadronic molecular candidates $X(3872)$ and $T_{cc}(3875)^+$, respectively, and can be described by a nonrelativistic effective Lagrangian manifesting heavy-quark spin symmetry, which includes only constant contact potentials at leading order. We explore entanglement suppression in a tensor-product framework to treat both the isospin and spin degrees of freedom. Using the $X(3872)$ and $T_{cc}(3875)^+$ as inputs, we find that entanglement suppression indeed leads to an emergent symmetry, namely, a light-quark spin symmetry, and as such the $D^{(*)}\bar D^{(*)}$ or $D^{(*)} D^{(*)}$ interaction strengths for a given total isospin do not depend on the total angular momentum of light (anti)quarks. The $X(3872)$ and $T_{cc}(3875)^+$ are predicted to have five and one isoscalar partner, respectively, while the corresponding partner numbers derived solely from heavy-quark spin symmetry are three and one, respectively. The predictions need to be confronted with experimental data and lattice quantum chromodynamics results to further test the entanglement suppression conjecture.