1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
2–8 Jul 2023
Sun Yat-sen University Zhuhai Campus
Asia/Shanghai timezone

TMD wave functions and soft functions at one-loop in LaMET

4 Jul 2023, 17:25
25m
A280 (Haiqin Building #6)

A280

Haiqin Building #6

Speaker

Zhifu Deng (Shanghai Jiao Tong University)

Description

TMDPDFs and TMDWFs are important physical quantities characterizing the distributions of constituent momentum in the hadron, and reflect the non-perturbative internal structure of hadrons. In large-momentum effective theory (LaMET), the TMDWFs can be extracted from the first-principle simulation of a four-quark form factor and quasi-distributions. We provide a one-loop proof of TMD factorization of the form factor by using expansion by regions. For the one-loop validation, we also present a detailed calculation of O(αs) perturbative corrections to these quantities, in which we adopt a modern technique for the calculation of the TMD form factor based on the integration by part and differential equation. The one-loop hard functions are then extracted. Using lattice data from Lattice Parton Collaboration on quasi-TMDWFs, we estimate the effects from the one-loop matching kernel and find that the perturbative corrections depend on the operator to define the form factor, but are less sensitive to the transverse separation. These results will be helpful to precisely extract the soft functions and TMD wave functions from the first principle in the future.

Primary authors

Jun ZENG (Shanghai Jiao Tong University) Wei Wang (Shanghai JiaoTong University) Zhifu Deng (Shanghai Jiao Tong University)

Presentation materials